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Abstract

Governing equations for a one-phase Stefan melting problem with variable latent heat are presented. It is shown that

these equations model the movement of the shoreline in a sedimentary basin. An analytical solution for the sedimen-

tation rate and shoreline movement––based on a similarity variable––shows a square root dependence of shoreline posi-

tion with time.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this paper is to present an analytical

solution of a one-phase Stefan melting problem which

involves a latent heat that is a linear function of space.

The governing equation is
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¼ m
o
2h
ox2

06 x6 sðtÞ ð1Þ

with boundary conditions

m
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����
x¼0

¼ ��q; and hjx¼sðtÞ ¼ 0 ð2Þ

where m is a diffusion coefficient, the flux �q is prescribed

and s(t) is the moving melt interface. To close the prob-

lem, the additional balance
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needs to be satisfied on this moving interface, where c is a
given constant. The problem (1)–(3) differs in two respects

from the standard one-phase Stefan melting problem [1]:

1. A fixed-flux Neumann boundary condition is applied

at the origin, x = 0, as opposed to the usual fixed-

value Dirichlet condition.

2. On comparison of (3) with the one-phase Stefan con-

dition (see Ref. [1]) it is seen that the latent heat term,

cs, is not constant but, rather, a linear function of

position.

In the context of conventional melting problems it is

difficult to provide a physical rational for the study of

problems where the latent heat is a function of space.

The formulation in (1)–(3), in particular the condition

in (3), is, however, a physically meaningful limiting

problem in the study of shoreline movement in a sedi-

mentary basin.
ed.
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Nomenclature

b height of the Earth�s crust above datum, m

h sediment height above datum, m

�q prescribed sediment line-flux, m3m�1 t�1

s(t) location of shoreline, m

t time, s

u(t) location of intersection between off shore

sediment wedge and basement, m

x space dimension, m

z(t) ocean level above datum, m

Greek symbols

a slope of off shore sediment wedge –

b basement slope –

c constant in modified Stefan condition, mt�
1
2

g scaled sediment height, mt
1
2

k interface position parameter –

m diffusion coefficient, m2 t�1

n similarity variable, mt�
1
2
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2. The shoreline problem

In recent work Swenson et al. [2] developed a model

for the movement of a shoreline in a sedimentary basin

in response to changes in sediment line-flux, tectonic

subsidence of the Earth�s crust, and sea level change.

A schematic of the basin cross-section is shown in Fig.

1. At a given point in the process two domains can be

identified in the system:

1. A subaerial, fluvial domain. In this domain, the sed-

iment transport and deposition can be modeled by

the diffusion Eq. [2]

oh
ot

¼ m
o
2h
ox2

þ ob
ot

; 06 x6 sðtÞ ð4Þ

where h is the height of the sediment above a datum,

b is the height of the Earth�s crust (the tectonic plate),
and the diffusivity m depends on the characteristics of

the sediment grains and the time-averaged water line-

discharge over the fluvial surface. The boundary con-

ditions on (4) are

m
oh
ox

����
x¼0

¼ ��qðtÞ; and hjx¼sðtÞ ¼ zðtÞ ð5Þ
Fig. 1. A schematic cross-section of a sedimentary ocean basin.
where �q is a prescribed sediment line-flux and z(t) is

the ocean level above the datum.

2. An offshore submarine domain. In general sediment

transport in this domain is controlled by a combina-

tion of slope- and wave-current-driven processes.

Swenson et al. [2] propose a simple treatment that

sets the offshore sediment surface at a fixed angle of

repose defined by slope a. In this treatment it is

assumed that the grain movement by subaqueous

avalanches is much more rapid that the movement

of sediment by the fluvial processes in the subaerial

domain; an assumption that has been validated by

experiment [3]. In this way, the offshore can be mode-

led as a ‘‘sediment wedge’’ that is maintained by the

landward supply of sediment to the shoreline. The

balance of the sediment in the wedge (see Swenson

et al. [2] for details) can be used to provide a condi-

tion for the advance or retreat of the shoreline, i.e.,

�m
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����
sðtÞ

¼ ðu� sÞ a
ds
dt

þ dz
dt
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�
Z u

s
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dx ð6Þ

where u(t) is the x position of the intersection of the

sediment-wedge toe with the basement.

Eqs. (4)–(6) define the ocean-basin shoreline-tracking

problem. In seeking numerical and semi-analytical solu-

tions, Swenson et al. [2] treat the condition in (6) as a

generalized Stefan condition and refer to the equation

as the shoreline-Stefan condition.
3. A limit case

A limit case for the above shoreline model can be ar-

rived at by considering a problem with a fixed sediment

line-flux, a constant ocean level (z = 0) and no tectonic

subsidence of the Earth�s crust––a good approximation

on many modern continental margins. If the additional

assumption of a basement with constant slope b < a is

made (see Fig. 2) so that by geometric construction



Fig. 2. Limit case with no tectonic subsidence or sea-level

change.
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a(u � s) = abs/(a � b) = cs, the shoreline-tracking prob-

lem, defined by Eqs. (4)–(6), reduces to the variable la-

tent heat Stefan problem given in Eqs. (1)–(3).
4. The similarity solution

On setting the movement of the shoreline to be

s ¼ 2kt
1
2; ð7Þ

introducing the similarity variable

n ¼ x

2t
1
2

; ð8Þ

and scaling the sediment height by

g ¼ h

2t
1
2

; ð9Þ

Eq. (1) and its boundary conditions (2) can be written as

an ODE in g(n), viz.,

m
2

d2g

dn2
þ n

dg
dn

� g ¼ 0; 06 n6 k ð10Þ

with

m
dg
dn

����
n¼0

¼ ��q and gjn¼k ¼ 0 ð11Þ

Eqs. (10) and (11) have the solution

gðnÞ ¼ �q
m

k
e
�n2

m þ p
1
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2Þ
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�k2
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2m�
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ð12Þ

In the similarity variable, n, the shoreline Stefan condi-

tion (3) can be written as

m
dg
dn

����
n¼k

¼ �2ck2 ð13Þ

from which, on using (12), the following non-linear

equation for the constant k is obtained

f ðkÞ ¼ p
1
2m�

1
2erfðkm�1

2Þ
�k2
m

1
2

�1
2

�1
2

� 1

k
þ 2ck

�q
¼ 0 ð14Þ
e þ p m kerfðkm Þ
Solving (14) for k will, on substitution into (7), provide a

tracking of the shoreline s(t) with time. Note that, for

positive values of m, �q, and c(a > b), df/dk > 0 for all

k > 0 and f(k)! �1 as k ! 0 and f(k)! 1 as

k! 1. Hence, one and only one positive value of k will

be a solution of (14).
5. Conclusions

In this short note a similarity solution for a one-

phase Stefan melting problem has been presented. The

novel feature in the problem is a latent heat that in-

creases linearly with distance from the origin; a feature

that can be associated with a model of shoreline move-

ment in a sedimentary basin during a period of tectonic

inactivity. The similarity solution exhibits a square root

dependence of shoreline position with time.

The similarity solution in (7), (12) and (14) is worth-

while from two points of view:

1. The solution provides an explicit analytical solution

that can be used to verify general computational

phase change algorithms. In this respect the Neu-

mann flux condition at x = 0 is outside of the norm

of conditions found in existing analytical solutions

of phase change problems, see [4, Chapter 10]. The

only other phase change similarity solutions, known

to the authors, that include Neumann conditions

are due to Tarzia and co-workers [5–8]; in these solu-

tions, however, a time dependent flux of the form

�q=
ffiffi
t

p
needs to be specified to realize an explicit

solution.

2. The central interest in studying shoreline motion is to

understand how surface processes interact with

changes in sea level to control the formation of strata

in sedimentary basins. In this respect, the analytical

solution of the limit shoreline model (1)–(3) provides

a worthwhile benchmark for the development of

numerical models that are designed to tackle more

complex problems.
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